Research Publications


Vila OF, Uzel SGM, Ma SP, et al. Quantification of human neuromuscular function through optogenetics. Theranostics. 2019;9(5):1232–1246. Published 2019 Jan 31. doi:10.7150/thno.25735


Duffy RM, Sun Y, Feinberg AW. Understanding the Role of ECM Protein Composition and Geometric Micropatterning for Engineering Human Skeletal Muscle. Annals of Biomedical Engineering 2016;44(6): 2076-2089


Das S, Morvan F, Jourde B, Meier V, Kahle P, et al. ATP citrate lyase improves mitochondrial function in skeletal muscle. Cell Metabolism. 2015;21(6): 868-76


Egerman MA, Cadena SM, Gilbert JA, Meyer A, Nelson HN, et al. GDF11 Increases with Age and Inhibits Skeletal Muscle Regeneration. Cell Metabolism.  2015;22(1): 164-74


Jankowski R. A comparison of commercially-available human skeletal muscle cells and media for research applications. Nature Methods/Application Notes 2011


Kang Z, Chen JJ, Yu Y, Li B, Sun SY, et al. Drozitumab, a human antibody to death receptor 5, has potent antitumor activity against rhabdomyosarcoma with the expression of caspase-8 predictive of response. Clinical Cancer Research.  2011;17(10): 3181-92


Lach-Trifilieff E, Minetti GC, Sheppard K, Ibebunjo C, Feige JN, et al. An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy. Molecular and Cellular Biology 2013;34(4): 606-18


Lee TY, Meszaros LB, Tobita K, Kumar AR. 3D Constructs of Human Skeletal Muscle-Derived Cells as a Model of Bone Formation: Osteogenic Differentiation in Response to BMP2. Plastic and Reconstructive Surgery 2013;132: 147-48


Owens J, Moreira K, Bain G. Characterization of primary human skeletal muscle cells from multiple commercial sources. In Vitro Cellular & Developmental Biology – Animal 2013;49(9): 695-705


Pessina P, Kharraz Y, Jardi M, Fukada S, Serrano AL, et al. Fibrogenic Cell Plasticity Blunts Tissue Regeneration and Aggravates Muscular Dystrophy. Stem Cell Reports 2015;4(6): 1046-60


Sousa-Victor P, Gutarra S, Garcia-Prat L, Rodriguez-Ubreva J, Ortet L, et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 2014;506: 316-21


Tchao J, Han L, Lin B, Yang L, Tobita K. Combined biophysical and soluble factor modulation induces cardiomyocyte differentiation from human muscle derived stem cells. Scientific Reports 2014;4(1): 6614


Tchao J, Kim JJ, Lin B, Salama G, Lo CW, et al. Engineered Human Muscle Tissue from Skeletal Muscle Derived Stem Cells and Induced Pluripotent Stem Cell Derived Cardiac Cells. International Journal of Tissue Engineering 2013;2013: 198762


Ye X, Lu L, Kolewe ME, Park H, Larson BL, et al. A biodegradable microvessel scaffold as a framework to enable vascular support of engineered tissues. Biomaterials 2013;34(38): 10007-15


Summermatter S, Bouzan A, Pierrel E, et al. Blockade of Metallothioneins 1 and 2 Increases Skeletal Muscle Mass and Strength. Molecular and Cellular Biology. 2016;37(5)


Brzeszczyńska J, Meyer A, Mcgregor R, et al. Alterations in the in vitro and in vivo regulation of muscle regeneration in healthy ageing and the influence of sarcopenia. Journal of Cachexia, Sarcopenia and Muscle. 2017;9(1):93-105


Meltzer M, Long K, Nie Y, Gupta M, Yang J, Montano M. The RNA Editor Gene ADAR1 is Induced in Myoblasts by Inflammatory Ligands and Buffers Stress Response. Clinical and Translational Science. 2010;3(3):73-80


Laternser S, Keller H, Leupin O, Rausch M, Graf-Hausner U, Rimann M. A Novel Microplate 3D Bioprinting Platform for the Engineering of Muscle and Tendon Tissues. SLAS TECHNOLOGY: Translating Life Sciences Innovation. December 2018:247263031877659